Press Releases

Oxitec’s Medfly Ready for Open Field Trials

Oxford, UK, 12th December 2016 – Oxitec announced today that after a series of successful contained environment studies across multiple countries with its self-limiting Mediterranean fruit fly (Medfly), the Company is ready to move forward towards open field trials. The studies demonstrated the self-limiting Medfly’s ability to successfully mate with wild Medfly and subsequently suppress the pest population. The efficacy of the Oxitec Medfly and existing control methods were also examined. 

Oxitec's Chief Scientific Officer, Simon Warner, Ph.D., said, “Over the past few years, the performance of our Medfly solution in testing across different countries has confirmed our belief that this product may deliver superior efficacy and an improved environmental profile as compared to many products on the market today. We are now planning to advance our environmentally-friendly Medfly product into field trials in different countries to demonstrate its potential in open environments.”

The Medfly (Ceratitis capitata) is considered one of the world’s most destructive agricultural pests capable of causing billions of dollars in damage by attacking more than 250 types of fruits, nuts and vegetables. Females lay their eggs inside fruit making them vulnerable to infection and rot, and larvae feed on the fruit reducing crop yields and quality. It is found throughout the Mediterranean and Africa, and is an invasive pest in Australia and the Americas.

Medfly is difficult to manage by conventional methods because of its ability to infest many types of crops year-round, and growers need alternative technologies for control. Oxitec’s approach uses genetically engineered self-limiting Medfly males that are released to mate with wild females. Their female offspring do not survive to adulthood and repeated releases result in a reduction of the pest population.

In the latest study, the Western Australia Department of Agriculture and Food (DAFWA) compared the mating performance of Oxitec’s Medfly with that of sterile insects treated with radiation, another technique used to control the pest population, to examine whether Oxitec’s solution offered an improved option for industry to control Medfly. As reported by DAFWA the mating performance of Oxitec’s Medfly “was comparable with that of sterile males irradiated at low levels, and exceeded that of sterile males treated with a higher dose of radiation which is used to provide a better guarantee of sterility.”

In 2010, Oxitec conducted the first study to demonstrate the efficacy of the self-limiting Medfly in collaboration with the University of Crete, Greece. In the trial, the Medfly pest population was eliminated in glasshouses in 12 weeks.

These results were then confirmed in netted trials in Morocco in collaboration with the leading agricultural group in the country, SAOAS. Oxitec’s Medfly showed equivalent mating performance with the wild Moroccan Medfly and again successfully suppressed the wild population. Furthermore, excellent control was also shown when the self-limiting Medfly insects were released at different life stages, which would provide growers with a more flexible application regimen than only releasing adult male flies.

Trials in Morocco also compared the protection of fruit crops provided by Oxitec’s Medfly with that of a leading insecticide used to combat Medfly globally. Sustained releases of Oxitec males resulted in a superior marketable yield of fruit compared to treatment with the leading insecticide. The data showed that Oxitec’s solution has the potential to be more cost-effective for the same level of control provided by insecticides and mass trapping. The trial results also demonstrated the potential for combining control practices in an integrated pest management programme in order to provide flexibility to growers.

“Advancing to open field trials is an important milestone for our pipeline of self-limiting insect products addressing pest damage to high value fruit and vegetable crops. Studies indicate that annual losses of crops due to these pests, including Mediterranean fruit fly, can reach billions of dollars. Additionally, these difficult to control insects can cause devastating impacts to agricultural economies dependent on high-value produce export,” noted Sekhar Boddupalli, Ph.D., President of Intrexon Crop Protection and Head of Intrexon’s AgBio Division. 

About Oxitec
Oxitec is a pioneer in using genetic engineering to control insect pests that spread disease and damage crops, and was founded in 2002 as a spinout from Oxford University (UK). Oxitec is a subsidiary of Intrexon Corporation  (NYSE: XON), which engineers biology to help solve some of the world’s biggest problems.  Follow us on Twitter at @Oxitec.

Oxitec contact:
Matthew Warren
info@oxitec.com
+44 (0)1235 832393

Source: Oxitec


print email rss